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RESEARCH MEMORANDUM

DETERMINATION OF COUPLED MODES AND FREQUENCIES L =
OF SWEPT UING—S BY USE OF POWER SERIES R

By Roger A. And.erson
SUMMARY

A solution 1s presented for the coupled modes and frequencies
of swept wings mounted on a fuselage. The energy method iz used in
conjunction with power serises to obtain the characteristic equations
for both symmetrical and antisymmetricel vibration. A numerical
oxainple which 1s susceptible to exact solution is presented, and the
resulls for the exact molution sud the solutlon presented in this
paper show excellent agreement. ) _ . . i

* INIRODUCTION

Except for ceprtain idealized cases, the natural vibration modes

~ and frequencies of wings (swept or unswept) cannot be found by exact

analysis, thus meking it necessary to resort to apvroximate methods
of solu.tion. This peper presents such a solution for the symmetrical
and antisymmetrical mass coupled bending and torsional modes end
frequenciss of a nonwmiform swept wing mounted on a fuselage. The o
enorgy method is used to derive two sete of linear characteristic
squations; one for symmnetrlcal and the other for amtisymmetrical
vibrations. The analysis assumes that the swept wings are essentially
beams and that the deflection and rotation of the beams conform to
stendard enginsering beam theory. Such an analysis may or msy not be
strictly appliceble to wings having a large root chord (especially
vhen combined with apprecisble sweep) because the distortions in the
vicinity of the root are not fully understood.

The importent feature of the method presented herein is the _
. simplification that results from the cholce of simple power series

for the expansion of the deflectlon and rotation of the vibrating

wing. Comparison of resulis from a power sexries solution to an —
exact golution for the modes and frequencies of an idealized structure

shows theat only & few terms are needed in the exoansions to obtain

good accuracy.
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BYMBOLS -

length of semispan along elastic axis
Young's modulus of elasticity

modulus of elasticity in shear

bending moment of inertie of eross sections perpendicular .

to elastic axls of wing

mass polar moment of inertia per unlt length of wing
about elastic axils

torsion constant for cross ssctlone perpendicular to
elabtic axis of wing

one-half of piliching polar moment of inertia of fuselage

about elagtlc axis of wing

one-half of roiling polar moment of inertia of fuselage
sbout its longltudinal axls

coordinate denoting deflectlion of elsstic axls of wing
coordinate denoting twlst of wing ebout elastlic axis

coordinate denoting distance along elagtic axis measured
from center line of fuselage or root of wing

angle of sweep, measured between wing elagtic axis and
line perpendicular to fuselage ~

welght per unit length
acceleration due to gravity
one-half of mags of fugelage

clrcular frequency of natural mode of vibration, radians
ey second
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e distance between mass center of wing cross sections or
points of mass concentration and elastic axis of wing;
positive when mass center lies forward of elastic axis

ep distance between mass center of fuselege and wing elastic

axis; posltive when mass center lies forwerd of elastic

axis :
&y, coefficient of nth term in power series expansion for y L
by coefficient of nth term in power meries expamsion for @

n, 1, J integers (1, 2, 3, « « )

A distance between equally spaced spanwise stations
ENERGY EXPRESSIONS AND DEFLECTION FUNCTIONS R

To determine ithe modes of vibration of wings it is sufficient
to consider the equilibrium of the semispan only. The ailrplane is
dlvided along its longitudinal axis with a coordinate system assigned
as shown in figure 1. In this paper, the fuselage ls assumed
inflexlble and 1t therefore possesses only the rigid body properties.

For vibration of this system, the energles considered are the
bending, twisting, and kinetic energles of the wing semispen and
half the kinetic energy of the fuselage. At maximum displacement
of the wing the sum of the strain energy of bending and strain
energy of twisting is given by the well-known expression,

Uné-j:) El(fl> dx+ 0 —-0-5-) ax (1)

The kinetic energy of the wing as it passes through the equilibrium
position 1 given by (see appendix for derivation),

2 Pr , [T 2 ™
vy =& my> dx.+ o mefy dx + 5 Im¢2 ax (2)
U0 0 o .
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Half of the kinetic: energy of the fuselage is given similarly by
(see appendix for derivation),.

2 _
Vp = %‘(‘%‘FQ + Pugeply + Tgp€F + Imvg)x—o (3)
where
C) angle of pitch of fuselage
¥ engle of roll of fuselage .

It can be shown by geometyy that these engles are related to the
angls of twlst at the root, the slope of the elastic axis at the
root, and the angle of sweep by the following relations:

@ = (¢ cos A - % é:}.n A>x=o - (%F)
V= (¢ sin A + % cos A>x=o (5)

By the energy method, functions are chosen to represent the
deflection end twist of the elastlc exis of the wing. It is con-
venient ‘to represent the deflection and twist by 'bhe two general
power series

y=a0+al@c.)+a2(§)2+...+an(%)“+... (6)
2 n
¢=b0+'bl(%-!j'bg(%)+...+bn(%>+... n

With these seriles, the geometrical boundary conditions at the wing
root (;_c_ O> can be satlsfied for both the symmetrical and anti-

symmetrical modes of vibration through use of simple relationships

It

i |
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between the coefficlents e, and 'po. Thege relaetionships will be

given later. The use of power series a.:_Lso_' alloyris for complete
freedom in choice of deflection and twist along the wing.

BOUNDARY CONDITIONS AND CHARACTERISTIC EQUATIONS

On substitution of eguations (L), (5), (6), and (7) into
equations (1), (2), and (3), the emergies U, Vi, end V2 will

.. be expressed In terms of the unknown coefficlents &,, b, and

the unknown frequency . It is convenient at this point %o
introduce the boundary conditions. e

L

., . For symmetrical vibrgtlon, the constralning relation at the
wing root is that the fuselage shall not roll, or

- \Ir,=@sinA+%§-coeA) =0 ®
X0 o
T

which gives the following simple relation between a; and by

8y = -BoL tan A T ey

Eliminatlon of &y from Vy and Vo (al does not appear in TU)

by means of this relatlon leads to the solution for symmetrical modes
and frequencies.

For entisymmetrical vibrations, the constraining relations at

the wing root are that the deflectlion 1is zero and that the fuselage
shall not pitch, or '

(¥) =0 (10)
%=O -~

8 = GJ cos A - %% einA)Li_‘o =0 (11)
T
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vhich give the following relations

aO = 0 (12)

Do = =k tan A o C3)

Substitution of these relations into ‘the expressions for Vi
end .. Vo (a, &nd b, do not appear in U) leads 'bo a solution for
the antlisymmetrical modes and frequencies.

The cheracteristlc modes and frequencles of vibration
(symmetrical and antisymmetricel) can be found by minimizstion of
the expression U - V7 -~ Vo with respect to the unknown

coefficlents a; and by. The following sets of linear

homogeneous equations are derived in this way for the two types
of vibration.

Symuetrical vibration.- For ag

B . N t
avo"'mF)"'g_anAn*bo(Bo*ieF -LAl'banA>+ E byBy = O
e o - n=1

(1 = 0) (1)

8ohy * Z an(‘A‘iﬂ'x ) r‘% * bo\B LAy, tanA) Z PrBian = 0

n=1

(i == 2, 3, h, . . o) i (15)
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For by

8
<BO+C§GF I;Al'ban[\)+gan<3n-%+l.ban1\).
n

cos“A

* ‘oo@, + T2hp tenih '+ Iﬁg - 2By tan!g

t .
* E bn(Dn'IBn-x-l‘banA =0

n=l

i (1 = 0) | (16)

80,8y *+ E 8nBiin * P (D:L Iv31+1 ‘ten A) E <i+n - ) =0

nel

(1=121,2,3, <<« -) (17)

Antisymmetrical vibration.- For 'ai T -

~

I
—— 2 EB
ay A *+ D tenh + 55— 1 tan
1< I.2 cos >

=

¥ Zs;—anénﬂ"' %.Bn tanA) + %bn(%})n ten A +B:i+1> = 0

(L = 1) (18)
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Ci t .
+
ay, @i+1 + "'Bi tanA) g an A:1+n ID + Z bBiyn =0

n=I

(i = 2, 3 u: . . .) (19)
For _bi - ;_
1. b 2. tﬁ'.' T E
Ll zDi tan A + Bi+3:) + Z'%Bilm + E_— bh@i+n - "i?) =0
= n=I ' ..
(f'=1,2,3 ..%) (20)

The constants Ay, By .., Ci+ns Dyyn, a@nd By . represent the

following integrals

. 'L
i+n
Ai+n = j mf\’%) . dx

.0 -

'L N\l AR
Bijn = me(f) e
0

L
- - +n-U
Cpan = M4 l)ﬁ(p- l)f EI@,S)i ax
Jo

L

(21)

(22)

(23)

- (2k)

(25)
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Different limits, &8 &and +, are used on the summetions for y
and ¢ because the number of terms taken in the two expansions need
not be the same. Retalning only the terms involving the coeffi-
cients &y through a3 and by through by, the two sets of

characteristic squations may be written in the determlnant forms
shown in tables I and II. In the tgbless 1t 1ls seen that terms
involving the angle of sweep A appeear only in one columm and row
of each determinant. When A = 0, these determinants lead to
solutions for the free symuetrical and antisymmetrical vibrations
of the unswept wing.

SOLUTION OF CHARACTERISTIC EQUATIONS

Velues of an and bp other than zero which satiefy the

equations in tables I and IT can.be found only when the determinante
of the systems of equatlons are zerc. The determinants contain the
unknown frequency o3 the values of & which cause the determinants
t0 be zero are the natural fregquencles of vibration. To determine
the mode assoclated with a given frequency, one of the unknown
coefficlents, a, or b,, 18 set equal to unity and any one of the

equatione is discarded. The resulting set of nonhomogeneous equations
is then solved simultansously to obtaln the reletive values of the

other coefficients. With the coefficients known, the mode is
obtained directly from equations (6) and (7).

_The values of o satisfying the frequency determinant may e
found by several methods. Perhaps the simplest way to locate a
frequency root is to evaluate the determinaent for a number of trial
values of o 1in the expected vicinity of a natural frequency and
to plot a curve of o versus the value of the determinant. In most
cases, the value of w giving a zero determinant can be obtalned
from the results of three or four evaluations. The evaluations may
b performed by the Crout method of solving determinants. (See
refersnce 1.} The Crout method yields solutions rapidly and it
provides for a running check which minimizes the possibility of
computational error. With the procedurs Just outlined, any desired
frequency root and mode can be found independently of the other
frequencies and modes. .

ITn the Crout solutions of the determinants presented in this
peper, the calculations should be carrled to at least eight signifi-
cant figures. If an insufficlent number of slgnlflicant flgures are
carried, errors due to small differences of large numbers will cause
difficulty in obtaining satisfactory check columns in the Crout
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solutions. The physical constants Ay,., By ., end so forth, in

the equations, howsver, need not be computed to the number of
significant figures uged in solving the determinants. They merely
need be computed as accurately as desired and then treated in the
Crout solutions as being of absoclute accuracy.

COMPUTATION OF CONSTANTS

‘A certain amount of preparatory. calculation must be done before
tho characterlistic equations can be solved for the frequencles and
modes. This calculation consists of determining the constants Ay .,

Bysns Cqun, ond so forth. To evaluate the constants, the physical
properties, m, I, I,, J, e, E, and G, of the wing mst be
known at a number of stations x/L along the wing. Also necessary

; . , J
are the numsricel velues of the quantities (%) which arise from
the use of power serises. TFor convenlence, _(%) has béen computed

at 10 stations (%.: 0.1, 0.2, « . . 0.9, i.é) for J varying

from 1 to 10. These data are.presented in table ITT. The

constants . A B c and so forth, are then found by

i+n’ i4n’ 1+n’

. J
multiplying the physical constants m, I, I,, and so forth, by-(%)

at each station along the wing and integrating over the span.

' The integrals can be evaluated convenlently by use of the
following numerical integration formula.which ie derived from the
properties of a fifth degree curve. - .

Ares = %25%(0._38&5 1.50b + 1.00c + 1.00d + L.50e + 0.38f) (26)

In this equation, a, b, ¢, and 80 forth, are the ordinates at

integrated into five equal segctions a distance A in length. For
10 sections, the formmla is

Ares = :lfﬁl(o38a+150b+100c+100d+150e+076f

'+l50g+100h+1001+l50,j+038k) . (27)
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Making use of this integration formmla, a convenient procedure for
calculating the constents Ay.., By,ns Ci,n, and so forth, is:

(1) Divide the wing into 10 equal sections (a multiple of five).

(2) Tebulate the wing parameters m, EI, GJ, me, eand I, at

pach station (root station is O and tip station is 10) and multiply
the tabulated parameter at station O by 0.38, at station 1 by 1.50,
at station 2 by 1.00, and so forth, until the psrameters at each
station have all been "welghted" with the proper constant in
equation (27). (In equation (27), a, b, c¢, eand go forth, are

actually the paraineters mltiplied by the valuos (%-)J' the work

is simplified, however, by first multiplying the perameter by the
"weighting factors” 0. 38, 1.50, 1.00, and so forth, and then

mltiplying by (f> >

(3) Multiply the "weighted" parametergat each station by the
J .
appropriate values. of (%) taken from teble III.

(4) Add the products formed in (3) over +the length of the wing
end mitiply the sums by 125\ /1hh,

- (5) Add to the sums in (4) the effect of concentrated masses
which have not besn included in the numerical integration. For
instance, the add.i’cion to the constant Ay, ., due %o & concentrated

mass, M, located at % 0.5 would be [M(O 5)1"'::_‘

ACCURACY OF RESULTS

Any analytical solution for alrplane wing modes a.nd. frequencles
mist necessarily be based on simplifying assumptlons, and the effect
that these assumptions may have on the accuracy of the solution can
only be determined by comparison of computed modes and frequencies
wlth those determined experimentally. In the absence of experlmental
results, it is helpful to know, nevertheless, the degree to which the
results from an energy solution check the results of an exact
solution (besed on the seme simplifying assumptions). For comparison,
an exact solution has been made for a specific example of a uniform
wing mounted on a fuselage. The physical parameters of this system
are shown in figure 2.
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An energy solution for this case weas made, assuming fourth
degree power series for the expansion of both the deflection and
rotation, -Because the wihg. is uniform, the constants in the equations
were determined by exact Integratlion over the semispan. The resulting
determinant for symmetricel vibration is presented in table IV. The

'zeros in the upper right and lower left guadrents of this determinant are
. dus to the fact that there 1s no mass coupling along the wing. All

the equations have:been divided through by the factor mlL, hence
the appearance of copstents such as 1/3, 1/%, 1/5, and so forth,

and the ratio RM Eg. The two lowest frequencies satisfying this

determinant are compared With the exact frequencies in the table

.tbelow.
Frequency
Mode (radiens/sec)
Exact Energy
1 5#.3 54,3
2 |157.4 | 157.%

The'frééﬁeneies obtained in the exact ani energy solutions were not

detexrmined to more significant figures.

The results indicate,

however, that the enprgy solution gives good accuracy. The modes
associated wi@h these frequencies are presented in_ figure 3. It is
most probable .that, for these two modes, & golution ueing third
degree power eeries would have glven satisfactory agreement with

the exact solution.

Langley Memoriael Aeronautical Laboratory

National Advisory Committée for Aeronautics

Lengley Field, Va.

i
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APPENDIX
_DERIVATION OF EXPRESSIONS FOR KINETIC ENERGY

In the energy solution used in this paper, the potential energy
stored in the wing at maximum displacement and the klnetic ensrgy
of the wing-fuselage system when pessing through the equilibrium
position must be known. This section glves the derivation of the
kinetic-~onergy expression; the equatlons for potentlal energy of
bending and twist are well known. .. '

In figure 4, a cross sectlon of the wing 1s shown at the instant
1t passes the equilibrium positlon; the elastlic axle ls assumed to
have a vertical veloclty v, and the cross section ig assumed to be
rotating at an angular yelocity . Any elemsnt of mess dm having
the coordinate v,9 can be shown to have a total velocity such that

vte = (v + Qr cos 8)2 + 022 gin (A1)

The kinetlc energy of the element will be % dmve®, If y end
are the maximum velues of deflection and rotation, the velocity v
end rotationel velocity £ may be shown to be equal to ay and’ w¢,
respesctively. Substitutlion of these values 1n the expresslion for
total velocity and integration of the kinetlc energy of all the
elements over the cross section gives for the total kinetic ensrgy
of unit length of the wing at the cross sectlion under consideration

‘D?am (ya + 20350 + k2¢2) ‘

where e 1s the distance between the elastlc axes and the center of
gravity (e is positive when center of gravity 1s forward of the

. elastic axis) of the cross section and k is the radius of gyration

" of the cross section about the elastic aexis. Integration of the kinetic
energy over the length of the wing gives for the total kinetic energy
of the wing

L
v, = %a-f n(f? + 2038 + ¥347) ax (a2)
0
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The expression for the kinetic energy of vertical and pltching
motion of the fuselage (half-fuselege) can be found by epplylng
equation (A2) to the fuselage masse., The angle ¢, however, 1s
replaced by the pitching angle of the fuselage glven by

(g cos A ~ %I sin..l\;>x . If © is used to denote the pitching
X ==0

angle, the kinetic energy of vertical and pifching motién of the
- fuselage is - ' C=

Tlr(® oo e,
or . o . - . R — L

Lt oo iy,

The kinetlic snergy of the fﬁselage in rolling motion is

2 .
w 2
ZirRY

vhere ¥ 1s the angle pﬁ'foll of the fuselage- given by
. d - . . . . ,
(¢ sin A +.E% cos-&)x dt- The total kinetic energy of the fuselage

18 then

2 . ' -
Vo = %%-mFyg + EmFera + IF?QE + IFﬁwé>E-o  (A3)
. - = R



NACA RM No. L7H28 15
REFERENCE

1. Crout, Prescott D.: A Short Method for Evaluating Determinants
and Solving Systems of Linsar Eguations with Real or Complex
Coefficlents. Supp. to Elec. Eng., Trans. Section, AIEE,
vol. 60, Dec. 1941, pp. 1235-1240. (Abridged as Merchont
Methods MM-182, Sept. 1941, Marchant Calculating Machine Co.,
Oakland, Calif.)



i=2

G + =) x b o + %~ 14y 0 d)- B 5,

* 62 63 G-ty ) hoow

; D 6D emed .
Gor Tty ) Go-mysmd) G- omnd) (050 wne B ) -3 ) ;- wad
N pmm) 6D 6D

S T )

NATTONAL ADVISORY
COMYTIEE FOR AESORAUFTCS

et

8ZHLT "ON WY VOVN



TABLE II — SYSTEM OF EQUATIONS FOR ANFISTMMETRICAL MODES AND FREQUENCIES OF SWEPT WING

8y 8 83 by by

1=1 @ —Enotan%+ Emaiaf?-s ta.n) <3 p tanA (h*‘ tnn19 (2+%)1ta.m‘) (3+
1=2 63+%Batan!9 @—%) 6-*;% | By By,
] e
N )
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TABLE ITT — VAIUES OF G)"

&

@

®

&

&

0.01

Ok

.16

.25
.36

A9

R

1.00

125

-343
512

1.000

0.00001
.00032
.00243
01024
.03125
-OTTT6
16807
.32768
59049

1.00000

0.0000001
0000128
.0002187
.0016364
0078125
0279936
0823543
2097152
4182969

1.0000000

0.00000001
00000256
00006561
-00065536
-00390625
01679616
05764801,

0.000000001
.000000512
.000019683
.0002621h)

001553125

.010077696

.040353607
.134217728

- 387420489

1.000000000

0.0000000001

0000001024
-0000055049
0001048576
0009765625
0060466176
0282475249
1073741624
.348678440]

1 .0000000000

RATTORAL ADVISORY
COMMITTEE FOR AERORAUTICB

81

82HLT "ON INH VOWVN




TABIE IV — SYETEM OF EQUATIONS APFLICABLE T) NOMERTCAL EXAMPLE
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For ay

s S8 8y gl
} | | |
o o o ° HE e ma ma ma
Sy A% Sk 8l
° o e o S CT IR PR P
e £18 A% &%
[~] o o i ' i !
e FIB S o oa oma oma
% SF % 1%
[=] (-] o o T1_h 1 { ] 1
AR NS MK LS
= &8
i . < < i
QY8 g § N TR T RSN T O T |
ﬁﬂ T..“.h. T.._“x.z T#-fo nm .
/lw g
N
~
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o Ak R
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an T
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(=P <
2
S’

For bi

8, = -BoL tan A

Eal

BATTONAL ADVISORY
COMMITTEE ¥OB AIRONAUTICS

i



20 NACA_RM No. L7H28

C.G—
(F use/age)

-

Note: As shown,e and
e have negative values,

C.G. Elastic axis
/‘Zﬁ\—/

Reference plane

¢

y
l

Section A-A

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure I.- Coordinate system used in analysis.
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D,

7\>
/
7

P

7
45°

N\

® >

7

Wing Parameters
E =10,000000 psi G = 4,000,000 psc
I = 8co /n* e, J = /600 /n" "
m = cgors lb-sec”/in’® I,.= /6 |b=-sec

Fuselage Parameters
Lrp= 400000 lb.~sec’-in. ZTgg= /0000 /b -sec-/n.
@ =-70/n Rp=2£=3
NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS _
Figure 2.- Farameters for numerical example.
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X/

N QN A

O N RN O

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
I 1 | N I L | (! I

2 4 A = /.0

"L
(b) Secorrd mode

Figure 3. — Symmetrical modes of vibration.
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\ dm

\ A
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|

Vi

‘V A2

NATIONAL ADVISORY
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Figure4.— Coordinate and velocity notation
for element of mass orn cross section.
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